



## An overview of the latest development on "ECO-Driving"

Brussels, 28 January 2010

Kris Jooris

Key Driving Competences





### Agenda



- Objective of Key Driving
- What is ECO-Driving
- Factors of motivation
- ■Focus on Eco Attitude survey
- Research on human behavior about ECO Driving
- •How to achieve sustainable change in driving behavior?
- Methodologies in place
  - Standard Training
  - Simulator
  - Integrated approach
- Focus on successful solutions
- Conclusion



### What is ECO-Driving?



- •Eco-driving is an advanced way of driving that reduces fuel consumption, greenhouse gas emissions and accident rates. Eco-driving is about driving in a style suited to modern engine technology: smart, smooth and safe driving techniques that lead to average fuel savings of 5-10%.
- •Eco-driving offers benefits for drivers of cars, vans, lorries and buses: cost savings, increased safety (less accidents) as well as improved ecological records (less emissions and noise levels).
- •In European countries the directive 2003/59/EC is been implemented since September 2009 to promote this advanced way of driving.

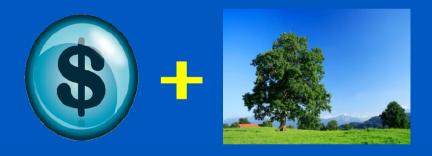


### **How to ECO-Drive?**





- 1. Shift up as soon as possible
- 2. Anticipate in traffic and maintain a steady speed
- 3. Decelerate Smoothly
- 4.No Idling
- 5.Use your vehicle in the most efficient way (optimize tire pressure, control breaking systems, ...)






## **Eco-driving versus Motivations**

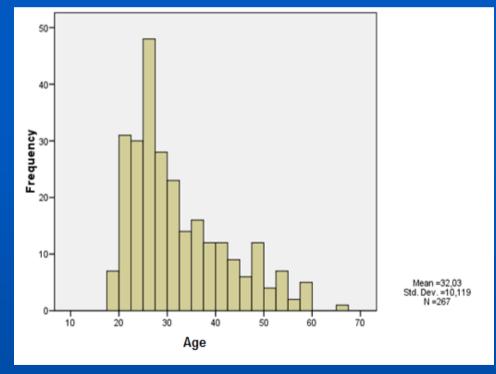


### **The Transport Operator:**



The Driver:








•Research project in cooperation with University Ghent- Prof. M. Vansteenkiste

Part 1: What kind of motivation factors do you have to drive eco-responsibly?

- •Survey validated in 2009 on **276** belgian car drivers between 18 and 68
- Now in process to be validated within group of professional truck drivers







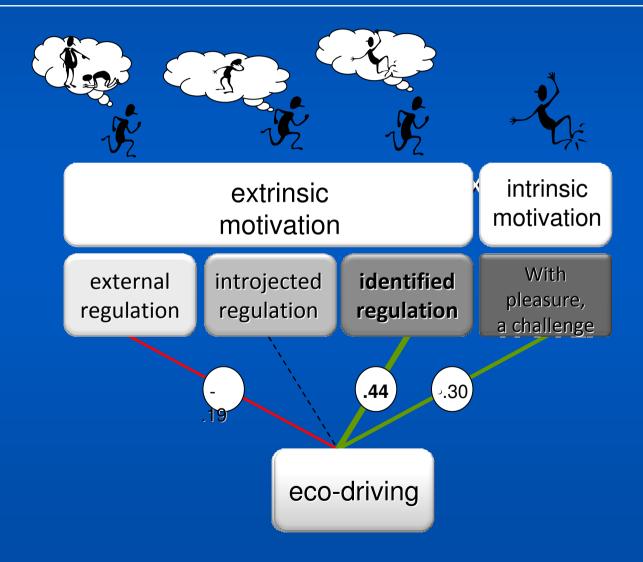
#### Some prejudices countered by this survey:

Any relation between applying eco-driving and ....?

Age?

Gender?

# Kilometers / year?


Company car owner?

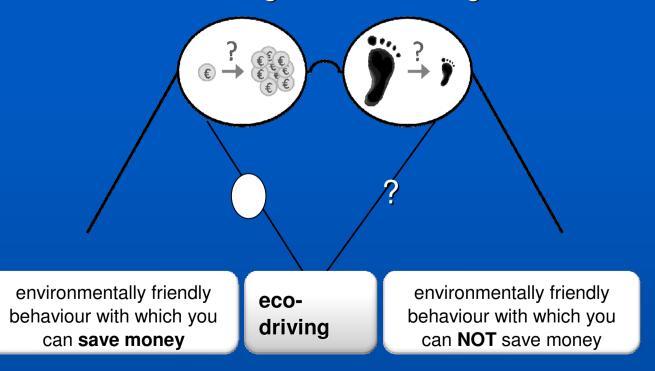
Training eco-driving fulfilled?

YES





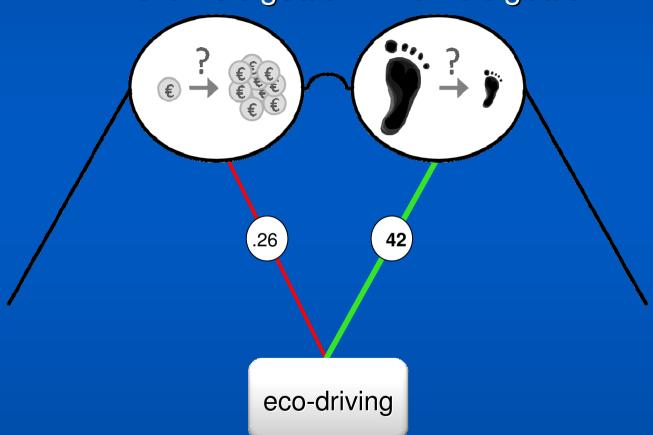







Research project in cooperation with University Ghent- Prof. M. Vansteenkiste

Part 2: What kind of goals do you aspire?


extrinsic goals ↔ intrinsic goals







#### extrinsic goals ↔ intrinsic goals





## How to achieve sustainable change in Driving Behavious





## How to measure and what to measure?





#### **Objective Score**

Independent of environment Coaching & management

### Qualitative Analyse

Evaluate Driving Sequence

#### Quantitative measure

Measure occurences



## Make it easy to understand but objective

| Eco-score-tabel(JUNI 2009) |        |  |  |
|----------------------------|--------|--|--|
| Chauffeur                  | Totaal |  |  |
| BOIRON FFranck (18)        | 69     |  |  |
| BOUVARD Bruno (21)         | 69     |  |  |
| CAVOUEJean-Paul (23)       | 90     |  |  |
| CHESNEL DOMINIQUE (939)    | 78     |  |  |
| Franky Vroman (26)         | 62     |  |  |
| DAZON Sébastien (28)       | 87     |  |  |
| DECRON Charlie (29)        | 92     |  |  |
| DELHOMME Michel (30)       | 79     |  |  |
| DENIZART Fabien (31)       | 95     |  |  |
| DION Franky (13)           | 60     |  |  |
| FEIGESPAN Jean-Michel (33) | 67     |  |  |
| GIRARD PAS CAL (98)        | 84     |  |  |
| Gemiddelde score           | 78     |  |  |



## How to achieve sustainable change in Driving Behavious Competences

#### Focus on 2 axes:

### improving competences + improving motivation

Using tools (independent from manufacturer) for

- Assessment
- Training
- Monitoring



### Integrated approach







ECO-proactive driving style and sustainable mobility

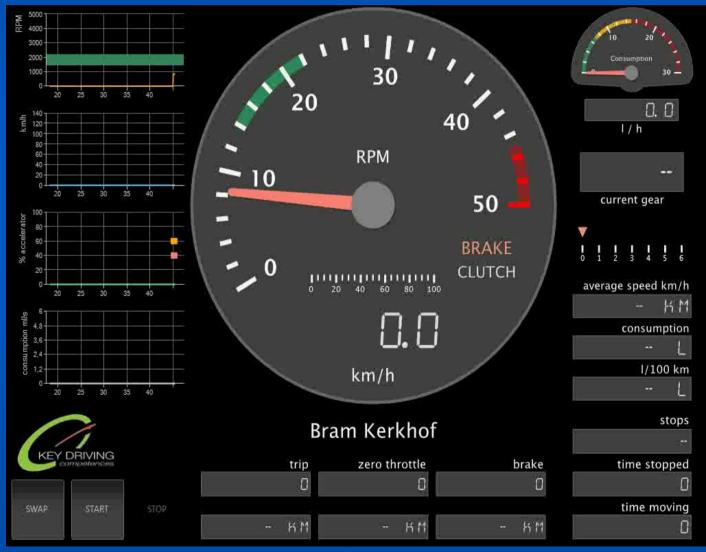








Savings in fuel consumption


Improved ecological records

**Increase in safety** 



## Measuring Methodology-1

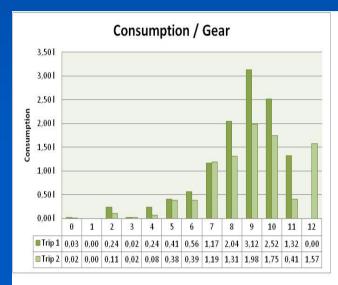






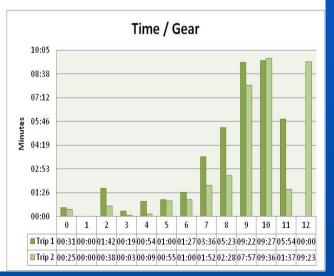
# **Measuring Methodology-2**




#### " and to communicate individual driving competences "

| KEY DRIVING TRAINING SYSTEM                                                |           |        |        |            |         |  |
|----------------------------------------------------------------------------|-----------|--------|--------|------------|---------|--|
| Eco-Proactive Driving Behaviour "What You Can't Measure, You Cant' Manage" |           |        |        |            |         |  |
| Driver                                                                     | Date      |        |        |            |         |  |
| Gunther Geentjens                                                          | 4/02/2009 |        |        |            |         |  |
| RESULTS                                                                    |           |        |        |            |         |  |
|                                                                            |           | TRIP 1 | TRIP 2 | Différence | %       |  |
| Elapsed Time                                                               | mm:ss     | 39:36  | 36:04  | 03:32      | 8,92%   |  |
| Total Distance                                                             | km        | 22,60  | 22,56  | -0,05      | -0,20%  |  |
| Average Speed                                                              | km/h      | 34,25  | 37,53  | 3,28       | 9,58%   |  |
| Consumption standstill                                                     | I         | 0,03   | 0,01   | -0,02      | -55,85% |  |
| Consumption moving                                                         | 1         | 11,63  | 9,19   | -2,44      | -21,00% |  |
| Total Fuel Consumption                                                     | 1         | 11,67  | 9,21   | -2,46      | -21,09% |  |
| Average Consumption                                                        | l/100km   | 51,6   | 40,8   | -10,8      | -20,94% |  |
| Average CO2 Emission                                                       | kg/100km  | 137,3  | 108,6  | -28,8      | -20,94% |  |
| RESULT ANALYSIS                                                            |           |        |        |            |         |  |
| Average Position Trottle                                                   | %         | 27%    | 28%    | 1%         | 3,27%   |  |
| Maximum Position Throttle                                                  | %         | 100%   | 100%   | 0%         | 0,00%   |  |
| Time vehicle in motion - Zero Throttle                                     | mm:ss     | 08:42  | 10:24  | 01:42      | 19,54%  |  |
| Time - Use of Breaks                                                       | mm:ss     | 06:12  | 03:18  | 02:53      | 46,65%  |  |
| Total Distance - Zero Throttle                                             | km        | 5,37   | 6,97   | 1,59       | 29,59%  |  |
| Total Distance - Use of Breaks                                             | km        | 2,60   | 1,34   | -1,26      | -48,54% |  |
| Number of Brakings                                                         | #         | 54     | 33     | -21        | -38,32% |  |
| Number of stops                                                            | #         | 6      | 2      | -4         | -66,67% |  |
| Time standstill                                                            | mm:ss     | 00:42  | 00:20  | 00:22      | 53,42%  |  |
| Gear shifts                                                                | #         | 181    | 123    | -58        | -32,04% |  |
| Gear shifts (upshift)                                                      | #         | 116    | 72     | -44        | -37,93% |  |
| Total Number of Engine Revolutions                                         | #         | 43236  | 35002  | -8234,50   | -19,05% |  |
| Average RPM                                                                | RPM       | 1092   | 971    | -121       | -11,11% |  |




# **Measuring Methodology- 4**

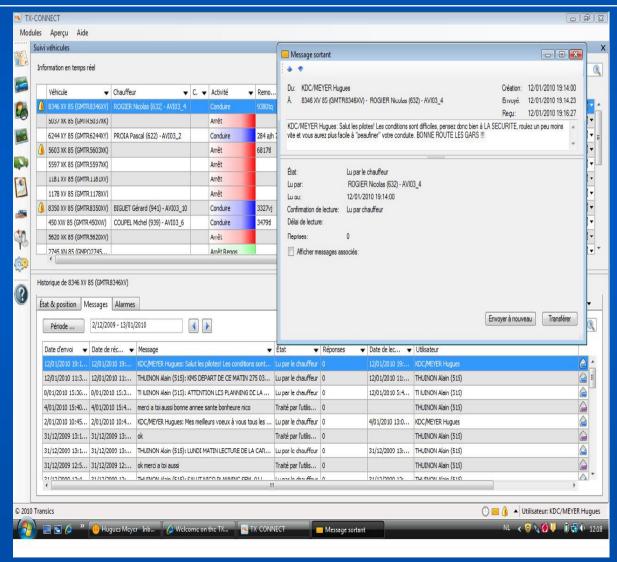








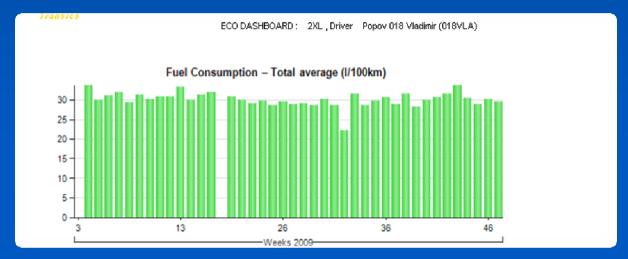


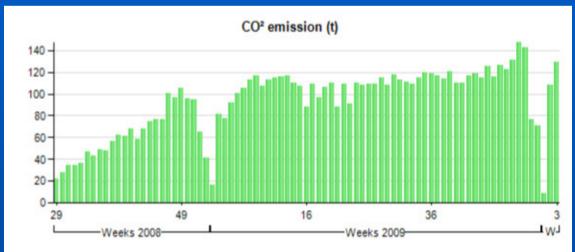



### TX-Eco modulecoaching



Ongoing coaching process:


•Instructor supporting the drivers/trainees by explaining their personal results and giving them feedback to improve





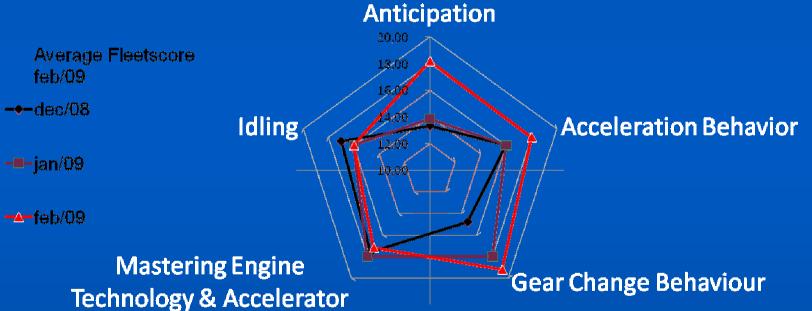

### TX-Eco module-Reporting










#### TX-Eco module

- in detail





#### **Evaluation on multiple criteria**



**ECO SCORE**: Jack Daniels

February 2009: 88.5/100

January 2009: 82/100



## Focus on successful solutions



|            | Traditional           | Integrated approach             |
|------------|-----------------------|---------------------------------|
| Assessment | Based on instructors' | Based on objective              |
|            | experience            | measurement                     |
|            |                       | Can bus data                    |
| Training   | Instructor impact     | Real-time coaching tool         |
|            | Quantitative data     | Qualitative data                |
| Monitoring | Declarative,          | Objective measurement &         |
|            | based on drivers'     | analysis                        |
|            | feedback              |                                 |
|            | Less reporting of     | Clarifies personalized training |
|            | personalized results  | needs                           |
|            | Source for discussion | Easy to understand              |
|            | Instructor needed     | Tool for self-assessment        |
|            | Instantly             | Ongoing, continuous process     |
|            |                       |                                 |
|            |                       |                                 |



#### Conclusion



### New learning approaches provide:

- A genuine tool for managing Human resources (drivers) on the road
- Platform for communicating and improving driving competences
- Leading to:
  - ✓ Increased driver safety
  - ✓ Savings (5 to 10% on annual basis)
  - ✓ Lower ecological impact (CO<sub>2</sub> emissions)





### **THANK YOU!**

## 2010 Driver Competence Seminar, Brussels, Belgium